博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【翻译】Longest Palindromic Substring 最长回文子串
阅读量:6238 次
发布时间:2019-06-22

本文共 3502 字,大约阅读时间需要 11 分钟。

原文地址:

转载请注明出处:                       

问题描述:Given a string S, find the longest palindromic substring in S.

这道题目是一个经典的 问题,在面试中经常会被问到。为什么?因为这个问题可以有很多很多种解法。接下来将会给大家讲解5种解法,大家准备好了么?
 
你现在也可以先去 尝试去解决它。
Hint:
首先,确认你能够理解 什么叫做 回文 palindrome。回文,就是一个正反向去读它,都是同一个结果的字符串。比如:“aba”是一个回文,但是“abc”不是。
一个普遍的错误:
有些朋友可能会立即想出一个快速的方法,但非常不幸,这个方法是不正确的。该方法描述如下:
把字符串S 反转,变成 S',然后找到不就好了么?
看起来是正确的,并没有什么不妥。但是我们看下面的例子:
 
S = “caba”, S’ = “abac”.
S和S'的最大公共子串是aba,就是正确的答案。
但是看另一个例子:
S = “
abacdfg
dcaba”, S’ = “
abacdgf
dcaba”.
这个算法将会得出S的最大回文是“abacd”,显然是不正确的。
接下来给出一个O(N2) DP 解法,同时空间复杂度也是O(N2)。
暴力搜索Brute force solution, O(N3):
暴力算法是对所有的子串,判断是否是回文。对于一个长度为N的字符串,其子串总共有C(N,2)种,而判断子串是否是回文,时间复杂度为O(N),所以总共耗费O(N3)时间.
动态规划解法, O(N2)时间复杂度 O(N2)空间复杂度:
为了将算法从暴力解法提升到DP解法,首先我们需要知道解法中得递推关系。比如字符串“ababa”,如果我们已经知道“bab”是回文,那么显然“ababa”也是回文,因为首字符和尾字符是相等的。
 
这样我们便知道了递推关系,描述如下:
定义 P[ i, j ] ← 如果子串Si … Sj 是一个回文,那么该项为true, 否则为false.
因此递推如下:
P[ i, j ] 为 true ← ( P[ i+1, j-1 ]为true,并且Si = Sj )

基本条件是:

P[ i, i ] 一定是true
P[ i, i+1 ] 为true ← ( Si = Si+1 )
这便是一个典型的DP问题解法。首先初始化长度为1,2的回文字符判断表,即P。然后以它为基础,逐个找出长度为3,4,5……的回文。(至于什么是DP问题,可以参看这篇文章
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
string longestPalindromeDP(string s{
  int s.length();
  int longestBegin 0;
  int maxLen 1;
  bool table[1000][1000{
false};
  for (int 0ni++{
    table[i][itrue;
  }
  for (int 0n-1i++{
    if (s[i== s[i+1]{
      table[i][i+1true;
      longestBegin i;
      maxLen 2;
    }
  }
  for (int len 3len <= nlen++{//对长度为3,4,5……的子串进行遍历
    for (int 0n-len+1i++{//以len为窗口,在s上进行平移,判断是否符合递推条件
      int i+len-1;
      if (s[i== s[j&& table[i+1][j-1]{
        table[i][jtrue;
        longestBegin i;
        maxLen len;
      }
    }
  }
  return s.substr(longestBeginmaxLen);
}

举例:cabccbad

第一次循环以后,table值如下

第二次循环以后,table值如下:

下面开始长度为3,4,5……的循环:
首先当len=3:
  
     窗口里的子串为cab,i=0,j=2,这时候判断 Table[1][1] 是否 true(
),并且 s[0] 和 s[2] 是否相等(
不相等)所以不满足。窗口平移:
  
     一样的判断,同理还是不满足。
……
len=3循环结束,table值不变,因为没有长度为3的回文串。
len=4:
  
     窗口子串为”cabc“,此时i=0,j=3,Table[1][2] false,不匹配。窗口平移。
    
     窗口子串为”abcc“,此时i=1,j=4,Table[2][3] false,不匹配。窗口平移。
  
     窗口子串为”bccb“,此时i=2,j=5,Table[3][4] true,且 s[2]==s[5],maxlen=4,longestBegin=2,Table更新
  
     后面都不更新。
len=5:都不更新
len=6:
     当窗口滑到
 
     串口子串为”abccba“,此时i=1,j=6,Table[2][5] true,且 s[1]==s[6],maxlen=6,longestBegin=1,Table更新
len=7:都不更新。

 

还有更简单的方法, O(N2) 时间复杂度 and O(1) 空间复杂度:
事实上我们可以在O(N2)时间复杂度的前提下,不使用额外的存储空间。
可以观察到,一个回文是以中心点,镜像对称的。因此,一个回文可以从中心点展开,而这个中心点,有2N-1个。
可能你会问,为什么是2N-1个中心点,而不是N个。这是因为偶数串中心点是两个数中间,奇数串中心点是中间的数字。
因为在一个中心点展开回文,需要耗时O(N),总共时间复杂度也就是O(N2).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
string expandAroundCenter(string sint c1int c2{
  int c1c2;
  int s.length();
  while (>= && <= n-&& s[l== s[r]{
    l--;
    r++;
  }
  return s.substr(l+1r-l-1);
}
 
string longestPalindromeSimple(string s{
  int s.length();
  if (== 0return "";
  string longest s.substr(01);  // c single char itself is a palindrome
  for (int 0n-1i++{//遍历整个字符串
    string p1 expandAroundCenter(sii);//以该位置字符为中心展开,奇数长
    if (p1.length(longest.length())
      longest p1;
 
    string p2 expandAroundCenter(sii+1);//以该字符后面的空隙展开,偶数长
    if (p2.length(longest.length())
      longest p2;
  }
  return longest;
}

举例:cabccbad

初始时,i=0 (奇 代表奇数长子串,偶 代表偶数长子串)

  奇:
          一次循环,l=-1,r=1
          s.substr(l+1,r-l-1)==s.substr(0,1),即”c“->longest
     偶:
          不满足循环条件,l=0,r=1
          substr(1,0) null.
i=1:
     奇:
           同上
     偶:
           同上
……
i=3:
     奇:
          同上
     偶:
          可以看出这是回文的对称点。
          循环三次,第四次判断结束。
          l=0,r=7
          substr(1,6):”abccba“ -> longest
……
 
 
进一步思考:
存在 O(N)的算法么?显然有! 关于 O(N)的解法将在下一篇中解答。

 

转载于:https://www.cnblogs.com/zhxshseu/p/4947609.html

你可能感兴趣的文章
Cocos2d-X游戏开发(一):搭建Cocos2d-X开发环境
查看>>
Linux: devfs, devtmpfs and udev
查看>>
nginx 日志切割
查看>>
objective-c 数据类型和限定词对应关系
查看>>
Golang实现简单tcp服务器04 -- 服务器的粘包处理
查看>>
centos7 mysql8安装
查看>>
任务状态机
查看>>
cocos2dx 实现软渲染引擎 soft rendering engine
查看>>
移动H5前端性能优化指南
查看>>
报表制作工具中自定义函数概述
查看>>
Sqoop2从Mysql导入Hdfs (hadoop-2.7.1,Sqoop 1.99.6)
查看>>
浮点数指令
查看>>
无法删除文件名称过长的文件
查看>>
手机端页面流畅滚动
查看>>
CentOS下 CPU 负载观察和性能监测
查看>>
Magento产品页面包屑导航(Breadcrumb)修正
查看>>
struts2 多文件上传
查看>>
在样式中控制列表长度
查看>>
项目经理之项目经理应该做什么(转)
查看>>
Git 分支 - 分支的衍合
查看>>